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Abstract

We develop a probabilistic modeling framework for multinayays. Our frame-
work exploits the link between graphical models and tenaotdfrization models
and it can realize any arbitrary tensor factorization dtme; besides many pop-
ular models such as CP or TUCKER models with Euclidean emdrfar non-
negativity with KL error. The probabilistic framework erlab us to develop a
model selection methodology based on variational Bayes.

1 The Model : Probabilistic Latent Tensor Factorization (PLTF)

We propose a unifying framework for full Bayesian inferetmeavhich any arbitrary tensor factor-
ization structure for Euclidean and KL costs can be realiBydmaking use of the duality between
exponential families and Bregman divergences, here welwasensor Factorizatioproblem as in-
ference problem in the probabilistgraphical Modelsvith Gaussian or Poisson components. This
way the tensor factorisation reduces to a parameter egimptoblem. The associated inference
algorithms can be derived automatically via message passimg matrix computation primitives
and the model can be selected via a variational bound on tigimaalikelihood [2, 1]. For this
purpose, we introduce a notation for tensor factorizati@uefs that closely resembles undirected
probabilistic graphical models [2, 9].

Probabilistic Latent Tensor Factorization is introducestfiin the LVA/ICA Conference, held in
France on 27-30th September 2010 [10]. Apart from that ¢htetion, for NIPS 2010 TF work-
shop we include model priors as hyperparameters as well delmader determination and model
selection as a natural extension to PLTF.

1.1 Notation

Following the established jargon, we call a K-way artdye X 7rx72xxIx gimply a 'tensor’.
Here, I}, are finite index sets, wherg is the corresponding index. We denote an element of the
tensorX (i, ia, . ..,ix) € X asX-ix_ Similarly, given the index seV = {i1,...,ix}

we use the notatioX (w) to denote an element of“1i2:ix  We associate with each TF model
an undirected graph, where each vertex corresponds to ar.inlle letlV” be the set of vertices

V ={v1,...va,...,vn}. Our objective is to estimate a set of tensBrs- {Z,|a = 1... N} such
that
minimize D(X||X) st X(w) = > [] Za(va) 1)
DEW «

where the functiorD is a divergence. Each,, is associated with an index sgt, such thatl” =

Ua V. Two distinct sets/, andV,,» can have nonempty intersection but they don't contain each
other. We define a set of 'visible’ indicé® C 1" andinvisible’ indices’ C V such thalV UW =
VandW Nnw = 0.



Example 1 For V' = {i,j,k,p,q,v}, W = {i,j,k}, Vi = {i,p}, Vo = {j,q}, V3 = {k,r} and
Vi = {p, q,r} (core tensor) TUCKER3 model is

XL,J k _ Z Zz,pZ],qZk er,q,r (2)

p,q,7

For PLTF, we write the following generative model.

v) = H Z (Vo) model paramaters to estimate 3)
S(w, )NPO(S A(v)) element of latent tensor fdPLT Fr;,  (4)
S(w,w) ~ N(S;A(v),1) element of latent tensor fdPLTFry  (5)
X(w) =Y S(w,w) (6)
weEW
0 X (w) is missin
M(w) = { 1 otr(:é}r)wise ’ mask array (1)

Here, V() andPO() denote the Gaussian and the Poisson distributidrs.the intensity field and

S is the latent source using as the parameter ankl is augmented from the source. Here note that
Wuw = U,V, = V and for their instantiationgw, w) = U,v, = v. The Poisson distribution
implies non negativity and also the model can deal natuvailly the missing data [8, 3] .

1.2 PLTFy: Factorization Model for KL Error

Given this model, we optimize the log marginal likelihopdX|©,.5) for Z,, using the EM that
leads to the following fixed point update equation f#y

Yogv, M) 35 Mo o Zor (var)
Yoz, M(w) s 20 Zor (var)

whereX (w) is the model estimate given as

= Z HZa(va) 9)

wEW «

Zo(Va) & Zo(Va) (8)

Example 2 (CP update equation)The multiplicative update rule for CP (shortly for CANDE-
COMP/PARAFAC) [6] is generated b LT Fx 1, with the settingN = 3, V = {i,j, k,r},
= {i,5,k}, Vi = {i,r}, Vo = {j,r} and V5 = {k,r}. The fixed point equation faf;
is
, S (MR X ) X k) 70T 7T
g« girzasl e (10)
Zj,kM IRy 2

1.3 Model Priors

After taking account the gamma model priors the fixed poimtate equation turns in to the follow-
ing. One obvious use of the priors is that we can control tlesgmess of the model.

Zo(va) ~ G(Za; Aa(Va), Ba(va)/Aa(Va)) (11)
(Aa(ve) = 1) + Za(a) Doy, M(w >§§:j [l s Zeo (v0r)
520 + Yo, M) o o Zor (V)

Zo (Vo) (12)

1.4 Message Passing

We note that the update equation consists of structuradhjlesi terms in both the denominator
and the numerator. To exploit this we define the following téresor valued function a&, (X)) :
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Au(X)= | D [ X(@) [T Zar(var) (13)
vEZ Vs a'#a
A, (X) is an object the same size Bf, while A, (X)(v,) refers to a particular element &, (X).
There are two benefits of using tlefunction notation. First, algebraically th® is equivalent to
the computation of marginal potentials for the cliques ia @raphical Models, hence to compute
A function one can use methods suchvadable eliminationor junction tree The second benefit

is thatA function allows as to write element-wise fixed point updaie mwith tensor as compact as
follows

Ao(Mo X/X)
Ao (M)

whereo and/ stand for element wise multiplication and division respety. We also see that this
equation can even turn into a matrix form and to be able toesAbS equations.

Zo  Zu o (14)

1.5 PLTFgy : Factorization Model for Euclidean Error

For Euclidean error the derivation of fixed point update ¢iguds similar to that of KL divergence
that we merely replace the Poisson likelihood with that ofeussian

0L gy R
Zalva) ; Mw) | (X(w) - X(w)) 1;[ T (Vo)
= Ag(MoX)—Ay(MoX)=0 (15)

The solution of this equation leads to two related but differiterative schematavultiplicative
Update Rule§MUR) andAlternating Least Squarg#\LS). First, when we use gradient ascent we
obtain MUR for PLT Fry similar to [7] as

Zo < Zoo Ao(M o X)/Au(M o X) (16)
Second, we can solve it directly that allows us to obtain AQSH LT Fgy
Ao(M o X)=A,(MoX) 17)

Note thatX depends otZ,, . If there is no missing data{ (w) = 1 for all w), the result is available
in closed form.

1.6 Matricization

Any element wise equation can be converted into the matrix foMe call this operation as 'ma-
tricization’. Note thatMatricizationis originally defined in [5, 6] as the operation of convertang
multiway array into a matrix by reordering the column fibdrsthis paper we refer to this definition
as 'unfolding’. For matricization we use Einstein’s sumioatconvention where repeated indices
are added over with some adaptations such as 'faster ingéxt¢avention for unfolding operations
and definition for Khati-Rao product.

Example 3 (Derivation of matrix form update rules for the TUCKER3 decomposition) We
compute first the prediction in matrix form

Xbik = Z GPaT AHP BIa kT (18)
par

% j r T kj
(X)i? = (Gt ATBICE = ((AG))((C @ B))),” (19)
Xa) = AGy(CaB)" (20)

Now, Az for all « can also be represented in matrix form. The functidnsand A are

Aa(X) = (X)) BICIGy = X1y (C ® B)G(,, (21)
Ac(X) = (X)) AV BICE = ATX(1)(C ® B) (22)



o if KL ((14)) we evaluate), (Q) and A, (M) whereQ = M o (X/X)

Qu(C ® B)G(, (A"Q))(C @ B)

A+ Ao

Gy < Gayo

(23)

e ifEUC-ALS. We solvA, (X) = A, (X) (17)when there are no missing observations, i.e.,
M (w) = 1 for all w. We show only the updates for the core ternSoiThe pseudo-inverse
of A is denoted bylf. From(22) we have

A"X(C®B) = AT (AGH(C®B)")(C® B) (24)
Gu + AlXy) ((CeB)T) (25)

2 Model Selection for Tensors

We developed an model selection framework foET F 1, that is for the non negative tensor
factorization models although it can be extended for otmeareneasures as well. We note that
selecting the right generative model among many alteresitban be a difficult task. For example,
given the observatio& “/** one can propose CP generative modeKds™* = " 70" z)" 75",

or a TUCKER3 modelX /% = Y~ Z1? 7239257 Z" or some arbitrary model a& 7+ =

> pa ZP 7P 75978 Our model selection framework can be user both model orelrahina-
tion and model selection. Our selection method is based timga model score by lower bounding
the log marginal likelihood by variational Bayes. The Bagasapproach offers an elegant solution
based on computing marginal likelihogdX |©), where latent variables and the parameters are
integrated out as the exact computation is intractable][4, 2

2.1 Variational Methods for PLT F,

Variational fixed point update equation f@r, (v, ) is, then, as follows

Aa(va) + La(va) Xygv, M) 355 T o Lo (va))

Zo(Va)) = (26)
) B0+ Logve M) [T o Bor (va)
where
EO&(U&) = <Za(va)> = Ca(va Da(va) (27)
Lo (va) = exp((log Z(v4))) = exp(¥(Cy(va))) Da(va) 1 is the digamma fn (28)
XE(w) = Z HEa(Ua) (29)
wEW o
Xp(w) =" [[Lalva) (30)
weW «

We come up with the following variational lower bound for tleey marginal likelihood of the
PLTFy, models as

LX) >B= )Y —Xp(w)—logT'(X(w)+1)+ X (w)log Xpp(w) (31)
weWw
- KL[G(C, D)||Gg(A, B/A)] (32)

where KL term can becom®’ >, .y log(Ca(va)) asymptotically making theVB bound ap-
proaches to BIC score [1].
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